Morning Fog along the Flint Hills National Scenic Byway

Mist Deployment, Part Deux

Second in a series about our first deployment of a Mist Systems wireless network. 

In my last post, I gave you an overview of the various components of the Mist Wireless system. This post will go into some of the design considerations pertaining to this particular project.

Because we’re now designing for more than just Wi-Fi, there are a few additional things to factor in when planning the network.

Floor Plans

It’s not uncommon for your floor plans to have a “Plan North” that doesn’t always line up with “Geographic North”. Usually this isn’t a factor, but looking at it in hindsight, I would strongly encourage you to build your floor plans aimed at geographic north from the start, as the Mist AI will also use that floor plan for direction/wayfinding and the compass in mobile devices will be offset if you just go with straight plan north. You can also design on plan north, but then output a second floor plan file that is oriented to true north. Feature request to Mist: Be able to specify the angle offset of the plan from true north and correct that for user display in the SDK.

For this project, I had access to layered AutoCAD files for the entire facility, which (sort of) makes things easier in Ekahau Site Survey, but sort of doesn’t – the import can get a little overzealous with things like door frames. I had to go do a fair bit of cleanup afterwards, and might have been better off just drawing the walls in the first place. This was partly due to the general lack of any good CAD tools on MacOS that would have allowed me to look at the data in detail and massage it before attempting the import into Ekahau. The other challenge is that ESS imported the ENTIRE sheet as its view window, which made good reporting impossible as the images had wide swaths of white space. Having the ability to crop the CAD file would have been nice.

Density Considerations

View from the rear of the main sanctuary at College Park Church in Indianapolis.

Since one of the areas being covered is a large auditorium, we had to plan on multiple small cells within the space. We needed to put the APs in the catwalks, as we did not have the option of mounting the units on the floor because of the sanctuary being constructed onslab (and while the cloud controller allows you to specify AP height and rotation from plan north, there is no provision to tell it the AP is facing *up* and located on/near the floor). This posed a few challenges, the first being that we were well above the recommended 4-5m (the APs were at 10m from the floor), the other being that we needed to create smaller cells. For this, we used the AP41E with an AccelTex 60-degree patch antenna.

Acceltex 8/10 dBi 60° 4-element patch antenna

 We also needed to either run a whole lot of cables up to the theatrical catwalks, or place a couple of small managed PoE switches – we unsurprisingly opted for the latter, using two 8-port Meraki switches, and uplinked them using the existing data cabling that was feeding the two UniFi APs that were up there.

As an added bonus, the sanctuary area was built with tilt-up precast concrete panels, which allowed us to use that heavy attenuation to our benefit and flood the sanctuary space with APs and not worry about spilling out too much.

Capacity-wise, we used 10 APs in the space, which seats 1700. Over the course of several church designs, I’ve found that a ratio of one active user for every three seats usually works out pretty well – in most church sanctuaries, the space feels packed when 2/3 of the seats are occupied, which means that we’re actually planning for one client for every two seats. Now, we’re talking active clients here, not associated clients. An access point can handle a lot more associations than it can active clients. As a general rule, I try to keep it to about 40 or 50 active clients per AP, before airtime starts becoming a significant factor.

In an environment like this, you want as many client devices in the room to associate to your APs, even if they’re not actively using them – when they’re not associated, they’re sitting out there, banging away with probe requests (especially if you have any hidden SSIDs), chewing up airtime (kind of like that scene from Family Guy where Stewie is hounding Lois just to say “Hi.”). Once they associate, they quiet down a whole bunch.

In addition to the main sanctuary, there are also a couple of other smaller but dense spaces: the chapel (seats 300) and the East Room (large classroom that can seat up to 250). In these areas, design focused on capacity, rather than coverage.

Structural Considerations

As is often the case with church facilities, College Park Church is an amalgamation of several different buildings built over a span of many years, accommodating church growth. What this ends up meaning is that the original building is then surrounded on multiple sides with an addition, and you end up with a lot of exterior walls in the middle of the building, as well as many different types of construction. Some parts of the building were wood-frame, others were steel frame, and others were cast concrete. The initial planning on this building was done without an onsite visit, but the drawings made it pretty obvious where those exterior (brick!) walls were. Naturally, this also makes ancillary tasks like cabling a little interesting.

Fortunately, the church had a display wall that showed the growth of the church which included several construction pictures of the building, which was almost as good as having x-ray vision.

Aesthetic Considerations

Because this is a public space, the visual appearance of the APs is also a key factor – Sometimes putting an AP out of sight takes precendence over placing for optimal Wi-Fi or BLE performance.

Placement Considerations

Coverage Area

Mist specifies that the BLE array can cover about 2500 square feet. The wifi can cover a little more, but it doesn’t hurt to keep your wifi cells that size as well, since you’ll get more capacity out of it. In most public areas of the building, we’re planning for capacity, not coverage. With Mist, if you need to fill some BLE coverage holes where your wifi is sufficient, you can use the BT11 as a Bluetooth-only AP.

AP Height

Mist recommends placing the APs at a height of 4-5m above the floor, in order to provide optimal BLE coverage. The cloud controller has a field in the AP record where you can specify the actual height above the floor.

AP Orientation

Because the BLE array is directional, you can’t just mount the APs facing any direction you please. These APs are really designed to be mounted horizontally, the “front” of the AP should be consistently towards plan north, but the controller does have the ability to specify rotation from plan north in case mounting it that way isn’t practical. The area, orientation and height are critical to accurate calculation of location information.

AP Location

Several of the existing APs in older sections of the building were mounted to hard ceiling areas, and we had to not only reuse the data cable that was there, but also the location. Fortunately, the previous system (Ubiquiti UniFi) was reasonably well-placed to begin with, and we were able to keep good coverage and reuse those locations without any trouble.

There were also some co-existence issues in the sanctuary where we had to make sure we stayed out of the way of theatrical lighting and fixtures that would pose a problem with physical or RF interference. In the sanctuary, we also have to consider the safety factor of the APs and keeping them from falling onto congregants like an Australian Drop-Bear.

Planning for BLE

Since starting this project, I’ve begun working with Ekahau on testing BLE coverage modeling as part of the overall wifi coverage, and it’s looking very promising. I was able to go back to the CPC design and replan it with BLE radios, and it’s awesome. Those guys in Helsinki keep coming up with great ideas. As far as Ekahau is concerned, multi-radio APs are nothing too difficult – They’ve been doing this for Xirrus arrays for some time now, as well as the newer dual-5GHz APs.

Stay tuned for a post about BLE in Ekahau when Jussi says I’m allowed to talk about it.

Up Next: The Installation

 

Cover Image: Explore Kansas: The Flint Hills National Scenic Byway (Kansas Highway 177)

Misty valley landscape with a tree on an island

Mist Deployment (Part The First)

First in a series about our first deployment of a Mist Systems wireless network. Mist Systems Logo

Over the course of the past few months, I’ve been working with the IT staff at College Park Church in Indianapolis to overhaul their aging Ubiquiti UniFi wireless system. They initially were looking at a Ruckus system, owing to its widespread use among other churches involved with the Church IT Network and its national conference (where I gave a presentation on Wi-Fi last fall). We had recently signed on as a partner with industry newcomer Mist Systems, and had prepared a few designs of similar size and scope for other churches in the Indianapolis area using the Mist system. We proposed a design with Ruckus, and another with Mist, with the church selecting Mist for its magic sauce, which is its Bluetooth Low Energy (BLE) capability for location engagement and analytics.

Fundamentally, the AP count, coverage, and capacity were not significantly different with Ruckus vs. Mist, and Mist offered a few advantages over the Ruckus in terms of the ability to add external antennas for creating smaller cells in the sanctuary from the APs mounted on the catwalks, as floor mounting was not an option.

About Mist

Mist is a young company that’s been around for about two or three years, and they have developed a couple of cool things in their platform – The first is what they call their AI cloud, the second is their BLE subsystem, and the last is their API.

Their AI component is a cloud management dashboard (similar to what you would see with Ruckus Cloud or Meraki — many of the engineers that started with Mist came over from Meraki), where the APs are constantly analyzing AP and client performance through frame capture and analysis, and reporting it back to the cloud controller. The philosophy here is that a large majority of the issues that users have with Wi-Fi performance is actually related to performance on the wired side of the network (“It’s always DNS.” Not always, but DNS — and DHCP — are major sources of Wi-Fi pain). The machine learning AI backend is looking at the stream of frames to detect problems, and then using that to generate Wi-Fi SLA metrics that can help determine where problems lie within the infrastructure, and doing some analysis of root causes. An example of this is monitoring the entire Station/AP conversation during and shortly following the association process. It looks at how long association took. How long DHCP took (and if it was successful), whether 4-way handshakes completed, and so on. It will also keep a frame capture of that conversation for further manual troubleshooting. It also keeps a log of AP-level events such as reboots and code changes so that client errors can be correlated on a timeline to those events. There’s a lot more it can do, and I’m just giving a brief summary here. Mist has lots of informational material on their website (and admittedly, there’s a goodly amount of marketing fluff in it, but that’s what you’d expect on the vendor website).

Graphs of connection metrics from the Mist system

 

 

 

 

 

 

 

 

 

 

Next, we have their BLE array. This is what really sets Mist apart from the others, and is one of the more interesting pieces of tech to show up in wifi hardware since Ruckus came on the scene with their adaptive antenna technology. Each AP has not one, but *eight* BLE radios in it, coupled with a 16-element antenna array (8 TX, 8RX). Each antenna provides an approximately 45° beam covering a full circle. Mist is able to use this in two key ways. One is the ability to get ridiculously precise BLE location information from their mobile SDK, (and by extension, locate a BLE transponder for asset visibility/tracking) and the other is the ability to use multiple APs to place a virtual BLE beacon anywhere you want without having to go physically install a battery-powered beacon. There are myriad uses for this in retail environments, and the possibilities for engagement and asset tracking are very interesting in the church world as well.

Lastly, we have their API. According to Mist, their cloud controller’s web UI only exposes about 40% of what their system can do. The remainder is available via a REST API that will allow you do do all kinds of neat tricks with it. I haven’t had a chance to dig into this much yet, but there’s a tremendous amount of potential there. Jake Snyder has taught a 3-day boot camp on using Python in network administration to leverage the power of APIs like the one from Mist (Ruckus also has an API on their Cloud and SmartZone controllers)

Mist is also updating their feature set on a weekly basis – rather than one big update every 6 months that may or may not break stuff, small weekly releases allow them to deploy features in a more controlled manner, making it easy to track down any potential show-stopper bugs, preferably before they get released into the wild. You can select whether your APs get the early-release updates, or use a more extensively tested stable channel.

Much like Meraki, having all your AP data in the cloud is tremendously useful when contacting support, as they have access to your controller data without you having to ship it to them. They can also take database snapshots and develop/test new features based on real data from the field rather than simulated data. No actual upper-layer traffic is captured.

The Hardware

note: all prices are US list – specific pricing will be up to your partner and geography.

There are four APs in the Mist line. The flagship 4×4 AP41 ($1385), the lower-end AP21 ($845), the outdoor AP61 ($?) , and the BLE-only BT11 ($?). The AP41 also comes in a connectorized version called the AP41E, at the same price as the AP41 with the internal antenna.

The AP41/41E is built on a cast aluminum heat sink, making the AP noticeably heavy. It offers an Ethernet output port, a USB port, a console port, and what they call an “IoT port” that provides for some analog sensor inputs, Arduino-style. It requires 802.3at (PoE+) power, or can use an external 12V supply with a standard 5.5×2.5mm coaxial connector. In addition to the 4-chain Wifi radio and the BLE array, the AP41 also has a scanning radio for reading the RF environment. On the AP41E, the antenna connectors are located on the downward face of the AP.

The AP21 is an all-plastic unit that uses the same mounting spacing as the AP41, and has an Ethernet pass-through port with PoE (presumably to power downstream BT11 units or cameras). Like the AP41, it also has the external 12V supply option.

This install didn’t make use of BT11 or AP61 units, so I don’t have much hands-on info about them.

It’s also important to note that none of these APs ship with a mounting bracket, nor does the AP have any kind of integrated mounting like you would find on a Ruckus AP. Mist currently offers 3 mounting brackets: a T-Rail bracket ($25), a drywall bracket ($25) and a threaded rod bracket ($40). The AP attaches to these brackets via four T10 metric shoulder screws (Drywall, Rod), or four metric Phillips screws (T-Rail). More on these later.

The Software

Each AP must be licensed, and there are three possibilities: Wifi-only, BLE Engagement, and BLE Asset tracking. Each subscription is nominally $150/year per AP, although there are bundles available with either two services or all three. Again, your pricing will depend on your location and your specific partner. Mist recently did away with multi-year pricing, so there’s no longer a cost advantage in pre-buying multiple years of subscriptions.

When the subscription expires, Mist won’t shut off the AP the way Meraki does, however, the APs will no longer have warranty coverage. After a subscription has been expired for two months, Mist will not reactivate an AP. The APs will continue to operate with their last configuration, however, but there will no longer be access to the cloud dashboard for that AP.

Links:

Mist Systems

Jake Snyder on Clear To Send podcast #114: Automate or Die

Mist Product Information

Up Next: The Design

Using Bitmovin Player with Church Online Platform

Today’s post will be a brief tutorial on using Bitmovin‘s excellent HTML5 video player with Church Online Platform.

If you’re a church that is wanting to go live, and you haven’t discovered COP, it’s a marvelous product. The fine folks on the life.church Digerati Team (who created the Bible App and made it available on just about every platform known to mankind). It’s a free hosted platform that lets you deliver church online. All you have to do is bring your own streaming provider and provide an embed code. You can use your provider’s player, or you can use your own player. The Digerati team are also a client of mine, and I really enjoy working with them – they’re talented, nerdy, and very good at what they do. (most recently, I helped them build out their Wowza Streaming Engine capability for automating the scheduling and delivery of simulated live events.)

One of my favorite video players out there right now is from Bitmovin, and they provide a CDN-hosted player that provides excellent analytics (complete with API access for the especially nerdy), and usage is free for the first 5000 impressions (and pricing is quite reasonable as you scale up from there). For this reason alone, it’s an excellent choice for churches getting started with streaming. Its other major benefit is that because it is written in HTML5 and Javascript, it will work on just about anything you can throw at it (for the really archaic devices, it still has a Flash component). It also is designed from the ground up to support the new MPEG-DASH standard, but if you’re using a streaming CDN or service that doesn’t provide DASH, no big deal, as the player also supports HLS, even for Flash delivery for those 3 devices that still haven’t discovered modern streaming technology or are running a particularly ancient version of Android. Added bonus, BitMovin’s player also supports VR and 360 streaming (as does Wowza Streaming Cloud).

For starters, you’ll need to sign up for an account, which will give you player information. One thing you’ll want to make sure you do is add your churchonline.org domain to the allowed domains for your license key. This is under Player/Overview:

Bitmovin Player Domain Config

If you forget to do this, the player will simply show an error telling you you need to do it.  This keeps someone from using your player key on their site, so be sure to use yourdomain.churchonline.org, not just churchonline.org.

To put this in your COP page, go to the event where you wish to use the player, and go to the Video tab:

ChurchOnline Event Settings

When you go to the Embed menu, you will see code to put it on the page (under Default video embed code). This is a little more involved than your standard embed code.

Bitmovin Embed Controls

A couple of key things to note here with regards to COP:

  1. In order to put the <script> stuff in your <head> section, you’d need to create a custom theme in COP. This is not necessary (in fact, putting that script statement in the head that way doesn’t work). What you’ll need to do is simply put the <script> piece just above the rest of it in the default embed code section.
  2. You’ll need to edit the source section in that code. If all you’re doing is HLS, you can remove the dash and progressive entries. Leave the HLS entry in place and put in the HLS URL provided by your streaming platform. In the case of Wowza Streaming Cloud, this is located at the bottom of the Overview tab of your streaming application under “Playback URLs”.
  3. The “poster” entry is the image the player shows when you’re not streaming any video.

So, for my test stream, the embed code looks like this:


<script type="text/javascript" src="https://bitmovin-a.akamaihd.net/bitmovin-player/stable/7/bitmovinplayer.js"></script>

<div id="player"></div>
<script type="text/javascript">
var conf = {
key: "d8XXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXX2e",
source: {
hls: "http://wowzaprod103-i.akamaihd.net/hls/live/######/########/playlist.m3u8",
poster: "http://dontfenceme.in/wp-content/uploads/2013/09/g-global-background.jpg"
}
};
var player = bitmovin.player("player");
player.setup(conf).then(function(value) {
// Success
console.log("Successfully created bitmovin player instance");
}, function(reason) {
// Error!
console.log("Error while creating bitmovin player instance");
});
</script>

The console.log lines aren’t necessary, but potentially useful when trying to debug why it can’t instantiate the player.

If you want to run a separate video when the doors aren’t open, put that under the offline video embed code section. You can leave the mobile and low sections empty, as your stream is probably already adaptive from your streaming provider.

Save it, and this is what you get:

BitMovin in ChurchOnline Platform

In order to remove the Bitmovin logo, edit the theme’s CSS and add the following lines:


/* Remove Bitmovin Logo on player */
.bmpui-ui-watermark {
display: none;
}

ChurchOnline Platform CSS Edit

Enhancing the public Wi-Fi experience

Recently, there was an excellent blog post from WLAN Pros about “Rules for successful hotel wi-fi“. While it is aimed primarily at Wi-Fi in the hotel business (where there is an overabundance of Bad-Fi), many of the tips presented also apply to a wide variety of large-scale public venue wifi installations. Lots of great information in the post, and well worth a read.

At the 2016 WLPC there was an interesting TENTalk from Mike Liebovitz at Extreme Networks about the pop-up wifi at Super Bowl City in San Francisco, where analytics pointed to a significant portion of the traffic being headed to Apple.

Meanwhile, a few months later at the 2016 National Church IT Network conference, I heard a TENTalk about Apple’s MacOS Server, where I first heard about this incredibly useful feature (sadly, it wasn’t recorded, that I know of, so I can’t give credit…)

With most of the LPV installations I’ve worked on, I’ve found the typical client mix includes about 60% Apple devices (mostly iOS). For example, this is at a large church whose wireless network I installed. (Note that Windows machines make up less than 10% of the client mix on wifi!)

Client mix from Ruckus ZoneDirector

OK, So what?

This provides an opportunity to make the wifi experience even better for your (Apple-toting) guests. Whenever possible, as part of the “WiFi System” I will install an Apple Mac Mini loaded with MacOS Server. This allows me to turn on caching. This is not just plain old web caching like you would get with a proxy server such as Squid, but rather a cache for all things Apple. What does this do for your fruited guests? It speeds up the download of software distributed by Apple through the Internet. It caches all software and app updates, App Store purchases, iBook downloads, iTunes U downloads (apps and books purchases only), and Internet Recovery software that local Mac and iOS devices download.

Why is this of interest and importance? Let me give you an example: A few years ago, we were hosting a national Church IT Round Table conference at Resurrection on a day when Apple released major updates to MacOS, iOS, and their iWork suite. In addition to the 50 or so staff Mac machines on the network, there were another hundred or two Mac laptops and iThings among the conference attendees. The 200MB internet pipe melted almost instantly under the load of 250 devices each requesting 3-5GB of updates. That would have melted even a gigabit pipe, and probably given a 10Gbps pipe a solid run for its money (not to mention bogging down some of the uplinks on the internal network!. Having a caching server would have mitigated this. It didn’t do great things to the access points in the conference venue either, all of which were not only struggling for airtime, but also for backhaul.

Just by way of an example, Facebook updates their app every two weeks and its current incarnation (86.0, March 30, 2017) weighs in at 320MB (the previous one was about half that!), and its close pal Messenger clocked in at 261MB. Almost everyone has those to apps, so they’re going to find itself in your cache almost instantly, along with numerous other popular apps. Apple’s iWork suite apps and Microsoft Office apps all weigh in around 300-500MB apiece as well. This has potential to murder your network when you least expect it. (A few years back, the church where I was working hosted the national Church IT conference that happened to coincide with Apple’s release of OSX Mavericks, and a major iWork update for both iOS and MacOS. The conference Wi-Fi and the church’s 200Mbps WAN pipe melted under the onslaught of a couple hundred Apple devices belonging to the guest nerds and media staff dutifully downloading the updates.)

In any case, check out the network usage analytics from either your wireless controller or your firewall. If Apple.com is anywhere near the top of the list (or on it at all), you owe it to yourself and your guests to implement this type of solution.Network Statistics from Ubiquiti UniFi

The Technical Mumbo-Jumbo

Hardware

As mentioned previously, a Mac Mini will do the job nicely. If you’re looking to do this on the cheap, it will happily run on a 2011-vintage Mini (you can find used Mac Minis on Craigslist or eBay all day long for cheap), just make sure you add some extra RAM and a storage drive that doesn’t suck (the stock 5400rpm spinning disks on the pre-2012 era Mac Mini and iMacs were terrible.) Fortunately, 2.5″ SSDs are pretty cheap these days. Newer Minis will have SSD baked in already.

If you’re wanting to put the Mac Mini in the datacenter, you might want to consider using a Sonnet RackMac Mini (which is available on Amazon for about $139) and can hold one or two machines.

Sonnet RackMac Mini

You can also happily run this off of one of the 2008-era “cheese grater” Mac Pros that has beefier processing and storage (and also fits in a rack, albeit not in the svelte 1U space the Sonnet box uses). If you have money to burn, then by all means use the “trash can” Mac Pro (Sonnet also makes a rack chassis for that model!).

This is a great opportunity to re-purpose some of those Macs sitting on the shelf after your users have upgraded to something faster and shinier.

Naturally, if you’re running a REALLY big guest network, you’ll want to look at something beefy, or a small farm of them Minis with SSD storage (the MacOS Server caching system makes it quite easy to deploy multiple machines to support the caching.)

The Software

MacOS Server (Mac App Store, $19.99)

Since most of your iOS guests will have updates turned on, one of the first things an iOS device does when it sees a big fat internet pipe that isn’t from a cell tower is check for app updates. If you have lots of guests, you will need to fortify your network against the onslaught of app update requests that will inevitably hit whenever you have lots of guests in the building.

The way it works is this: When an Apple device makes a request to the CDN, Apple looks at the IP you’re coming from and says, “You have a local server on your LAN, get your content from there, here’s its IP.” The result being that your Apple users will get their updates and whatnot at LAN speeds without thrashing your WAN pipe every time anyone pushes out a fat update to an app or the OS, which is then consumed by several hundred people using your guest wifi over the course of a week. You’ve effectively just added an edge node to Apple’s CDN within your network.

Content will get cached the first time a client requests it, and it does not need to completely download to the cache before starting to send it to the client. For that first request, it will perform just as if they were downloading it directly from Apple’s servers. If your server starts running low on disk space, the cache server will purge older content that hasn’t been used recently in order to maintain at least 25GB of free disk space.

MacOS Caching Server Configuration

The configuration

If you have multiple subnets and multiple external IPs that you want to do this for, you can either do multiple caching servers (they can share cache between them), or you can configure the Mini to listen on multiple VLANs:

Mac OS network preferences panel

Once you have the machine listening on multiple VLANs, you can tell the caching server which ones to pay attention to, and which public IPs. The Mac itself only needs Internet access from one of those subnets.

MacOS Server Caching Preferences

The first dropdown will give you the option of “All Networks”, “Only Local Subnets”, and “Only Some Networks”. Choosing the last one opens an additional properties box that allows you to define those networks:

Mac OS Server Cache Network Settings

The second one gives you the options of “Matching this server’s network” or “On other networks”. As with the first options, an additional properties box is displayed.

In both cases, hit the plus sign to create a network object:

Mac OS Server Create a New Network

It should be noted here that this only tells the server about existing networks, but it won’t actually create them on the network interface. You’ll still need to do that through the system network preferences mentioned previously. If you don’t want to have the server listen on multiple VLANs, you can just make sure its address is routable from the subnets you wish to have the cache server available, define the external and internal networks it provides service to, and you should be off to the races. This will provide caching for subnet A that NATs to the internet via public IP A, and B to B, and so on. Defining a range of external IPs also has you covered if you use NAT pooling.

There’s also some DNS SRV trickery that may need to happen depending on your environment. There are some additional caveats if your DNS servers are Active Directory read-only domain controllers. This post elaborates on it.

 

Is it working?

Click the stats link near the top left of the server management window. At the bottom is a dropdown where you can see your cache stats. The red bar shows bytes served from the origin, and green shows from the cache. If you only have one server doing this, you won’t see any blue bars, which are for cache from peer servers. Downside is that you can only go back 7 days.

On this graph, 3/28 was when there were both a major MacOS and iOS update released, hence the huge spike from the origin servers on Apple’s CDN. Nobody has updated from the network yet… But guest traffic at this site is pretty light during the week. I’ll update the image early next week.

MacOS Server Cache Stats

Other useful features

A side benefit of this is that you can also use this to provide a network recovery boot image on the network, in case someone’s OS install ate itself – on the newer Macs with no optical drive, this boots a recovery image from the internet by default. This requires some additional configuration, and the instructions to set up NetInstall are readily available with a quick Google search.

If you want, you can also make this machine the DHCP and local DNS server for your guest network. With some third-party applications, you can also serve up AirPrint to your wireless guests if they need it.

Conclusion

From a guest experience perspective, your guests see their updates downloading really fast and think your WiFi is awesome, and it’s shockingly easy to set up (the longest and most difficult part is probably the actual acquisition of the Mac Mini) It will even cache iCloud data (and encrypts it in the cache storage so nobody’s data is exposed). Even if you have a fat internet pipe, you should really consider doing this, as the transfers at LAN speed will reduce the amount of airtime consumed on the wireless and the overall load on your wireless network. (Side note, if you’re a Wireless ISP, this sort of setup is just the sort of thing you ought to put between your customer edge network and your IP transit)

Of course, you could also firewall off Apple iCloud and Updates instead, but why would you do that to your guests? Are you punishing them for something?

Android/Windows users: So sad, Google and Microsoft don’t give you this option (Although Microsoft sort of does in a corporate environment with WSUS, but it’s not nearly as easy to pull off, nor is it set up for casual and transient users). I would love it if Google would set up something like this for play store, Chromebook, etc, as about half of the client mix that isn’t from Apple is running on Android. You can sort of do it by installing a transparent proxy like squid.

Now, if only we could do the same for Netflix’s CDN. The bandwidth savings would be immense.

Update

(Added November 16, 2017)

As of the release of MacOS High Sierra and MacOS Server 5.4 (release notes), the caching service is now integrated into the core of MacOS, so any Mac on the network can do it, without even needing to install Server. The new settings are under System Preferences > Sharing:

 

 

Going Serverless: Office 365

Recently I just completed a project for a small church in Kansas. Several months ago, the senior pastor asked me for a quote on a Windows server to provide authentication as well as file and print share services. During the conversation, a few things became clear:

  1. Their desktop infrastructure was completely on Windows 10. Files were being kept locally or in a shared OneDrive account.
  2. The budget they had for this project was not going to allow for a proper server infrastructure with data protection, etc.
  3. This church already uses a web-based Church Management System, so they’re somewhat used to “the cloud” already as part of their workflows.

One of the key features provided by Windows 10 was the ability to use Office 365 as a login to your desktop (Windows 8 allowed it against a Microsoft Live account). Another is that for churches and other nonprofits, Office 365 is free of charge for the E2 plan.

I set about seeing how we could go completely serverless and provide access not only to the staff for shared documents, but also give access to key volunteer teams and church committees.

The first step was to make sure everybody was on Windows 10 Pro (we found a couple of machines running Windows 10 Home). Tech Soup gave us inexpensive access to licenses to get everyone up to Pro.

Then we needed to make sure the internet connection and internal networking at the site was sufficient to take their data to the cloud. We bumped up the internet speed and overhauled the internal network, replacing a couple of consumer-grade unmanaged switches and access points with a Ubiquiti UniFi solution for the firewall/router, network switch, and access points. This allows me and key church staff to remotely manage the network, as the UniFi controller operated on an Amazon Web Services EC2 instance (t2.micro). This new network also gave the church the ability to offer guest wifi access without compromising their office systems.

The next step was to join everyone to the Azure domain provided by Office 365. At this point, all e-mail was still on Google Apps, until we made the cutover.

Once we had login authentication in place, I set about building the file sharing infrastructure. OneDrive seemed to be the obvious solution, as they were already using a shared OneDrive For Business account.

One of OneDrive’s biggest challenges is that, like FedEx, it is actually several different products trying to behave as a single, seamless product. At this, OneDrive still misses the mark. The OneDrive brand consists of the following:

  • OneDrive Personal
  • OneDrive for Business
  • OneDrive for Business in Office 365 (a product formerly known as Groove)
  • Sharepoint Online

All the OneDrive for Business stuff is Sharepoint/Groove under the hood. If you’re not on Office 2016, you’ll want to make the upgrade, because getting the right ODB client in previous versions of Office is a nightmare. Once you get it sorted, it generally works. If you’ve got to pay full price for O365, I would recommend DropBox for Business as an alternative. But it’s hard to beat the price of Office 365 when you’re a small business.

It is very important to understand some of the limitations of OneDrive for Business versus other products like DropBox for Business. Your “personal” OneDrive for Business files can be shared with others by sending them a link, and they can download the file, but you can’t give other users permission to modify them and collaborate on a document. For this, you need to go back to the concept of shared folders, and ODB just doesn’t do this. This is where Sharepoint Online comes in to play.

Naturally, this being Sharepoint, it’s not the easiest thing in the world to set up. It’s powerful once you get it going, but I wasn’t able to simply drop all the shared files into a Sharepoint document library — There’s a 5000-file limit imposed by the software. Because the church’s shared files included a photo archive, there were WAY more than 5000 files in it.

Sharepoint is very picky about getting the right information architecture (IA) set up to begin with. Some things you can’t change after the fact, if you decide you got them wrong. Careful planning is a must.

What I ended up doing for this church is creating a single site collection for the whole organization, and several sites within that collection for each ministry/volunteer team. Each site in Sharepoint has 3 main security groups for objects within a site collection:

  • Visitors (Read-Only)
  • Members (Read/Write)
  • Owners (Read/Write/Admin)

In Office 365, much as it is with on-premises, you’re much better off creating your security groups outside of Sharepoint and then adding those groups to the security groups that are created within Sharepoint. So in this case, I created a “Worship Production” team, added the team members to the group, and then added that group to the Worship Site Owners group in Sharepoint. The Staff group was added to all the Owners groups, and the visitors group was left empty in most cases. This makes group membership administration substantially easier for the on-site admin who will be handling user accounts most of the time. It’s tedious to set up, but once it’s going, it’s smooth sailing.

Once the security permissions were set up for the various team sites, I went into the existing flat document repository and began moving files to the Sharepoint document libraries. The easiest way to do this is to go to the library in Sharepoint, and click the “Sync” button, which then syncs them to a local folder on the computer, much like OneDrive (although it’s listed as Sharepoint). There is no limit to how many folders you can sync to the local machine (well, there probably is, but for all practical purposes, there isn’t). From there it’s a matter of drag and drop. For the photos repository, I created a separate document library in the main site, and told Sharepoint it was a photo library. This gives the user some basic Digital Asset Management capabilities such as adding tags and other metadata to each picture in the library.

So far, it’s going well, and the staff enjoys having access to their Sharepoint libraries as well as Microsoft Office on their mobile devices (iOS and Android). Being able to work from anywhere also gives this church some easy business continuity should a disaster befall the facility — all they have to do is relocate to the local café that has net access, and they can continue their ministry work. Their data has now been decoupled from their facility. I have encountered dozens of churches over the years whose idea of data backup is either “what backup?” or a hard drive sitting next to the computer 24×7, which is of no use if the building burns to the ground or is spontaneously relocated to adjacent counties by a tornado. The staff doesn’t have to worry about the intricacies of running Exchange or Sharepoint on Windows Small Business Server/Essentials. Everything is a web-based administrative panel, and support from Microsoft is excellent in case there’s trouble.

If you’re interested in how to take your church or small business serverless, contact me and I’ll come up with a custom solution.

Controlling Audio With ProPresenter

Our church is a small one. So its not always especially easy to fully staff our tech booth, and sometimes, one must fly solo, which adds to the workload, and sometimes stuff gets forgotten, like unmuting microphones for the choir or the person reading the scripture.

Fortunately, there is some tech than can help us in this regard. We use ProPresenter for our graphics presentation, and an Allen & Heath QU-24 console for our audio. The Qu-24 is connected to the Mac that runs ProPresenter via a USB cable, which shows up in the Mac as a 32 in/32 out audio device, as well as a MIDI device. This is primarily to be able to use the console as a multitrack and DAW interface, but it also lets us play back audio from ProPresenter media cues without ever leaving the digital domain, and saving us a couple of inputs on the board (although there’s no shortage of those). But because it’s also a MIDI device, this gives us some options with ProPresenter’s $99 MIDI module add-on. The Qu series boards can also do MIDI over IP (in fact, the Qu-Pad remote control app for iPad uses MIDI over IP to work its magic). If you’re using MIDI over IP with a Mac, you’ll need a special driver for the Mac. No driver is needed for USB.

First, a few resources we’ll need:

In the Qu Series, mutes and mute groups are controlled by a sequence of a Note On/Off message. The specific note determines the channel or mute group being controlled, and a the velocity value determines if it’s being turned on (Muted) or off (Unmuted). Velocity values below 64 turn the mute off, and above turn it on.

Meanwhile, over in ProPresenter, since Version 6, we have the ability to add MIDI Note On/Off cues to a slide. See where this is going? Unfortunately, ProPresenter doesn’t have the ability to do anything other than MIDI notes in a slide at the moment, so we can’t get really crazy with starting recordings or anything else requiring non-note MIDI messages.

So how do we know what notes emulate button presses? The documentation provides this handy method:

OK, this requires thinking and math. Not so helpful. This is where the MIDI monitor comes in. Download it and run it, and it shows everything coming across the MIDI interface. Push the button you’re interested in, and lo, MIDI Monitor helpfully shows you what note you’re interested in:

In this case, G#4 is the mute group for our choir. A4 is the mute group for the speaking mics on the chancel. A1 is the lectern mic.

Screenshot 2016-11-20 13.51.30So now, to be able to add a cue at the beginning of a song the choir is singing, I simply have to add two cues to the first slide to turn on the choir microphones:

  • NOTE ON, G#4(80), 63
  • NOTE OFF, G#4(80)

Then I can add a slide at the end of the playlist entry that then turns them back off, or add these to the beginning of the next playlist entry:

  • NOTE ON, G#4(80), 127
  • NOTE OFF, G#4(80)

Likewise, when someone is at the lectern reading scripture, I can unmute that channel automatically using the corresponding note number, and mute them again when they’re done.

On the flip side, you can also use note on/off commands to control ProPresenter. So you *could* also use the Mute, SEL, and PAFL buttons on unused channels to trigger things in ProPresenter (you also want to make sure that you don’t overlap these with the mutes and mute groups that you are actively using so as not to inadvertently advance a slide when hurriedly muting a channel). ProPresenter also conveniently tells you what the last note sent was, so you can actively push the button you want to use, make a note of its number, and put it in the action you wish.

 

Another approach you can take is to create a presentation in ProPresenter containing blank slides with the various functions you wish to use. Then you can copy these slides into presentations and add a Go To Next timer to them to automatically advance to the next slide. I would also recommend using slide labels and colors to clearly identify what each slide is doing:

Screenshot 2016-11-20 13.47.55

 

If you have controllable lighting and your lighting console also has MIDI capability, This comes in handy as well. And if you’re really a one-man band, and like to do things like pads underneath certain worship elements, you can use this to trigger those as well. But if you get to that point, you may want to look into QLab to control all of them at the same time.

So there you have it: a quick and easy way to automate some of your workload with the Qu series boards. If you’ve got another board that you use, let me know in the comments if you do (or would like to do) something like this. Would also love to hear if anyone is using hardware MIDI controllers like the Novation LaunchPad and how you have it set up.

Additional Info:

Summary of MIDI Messages (midi.org)

Nonprofit Tech Deals: Microsoft Azure

Last week while I was at the Church IT Network National Conference in Anderson, SC, a colleague pointed me to a fantastic donation from Microsoft via TechSoup: $5000/year in Azure credit. At a hair over $400/month, this means you can run a pretty substantial amount of stuff. Microsoft just announced this program at the end of September, so it’s still very new. And very cool. Credits are good any time within the 12-month period, so you don’t have to split them up month by month. They do not, however, roll over to the following year.

The context of the conversation was for hosting the open-source RockRMS Church/Relationship Management System, but Wowza Streaming Engine is also available ready to go on Azure. And many other things. (and for those of us in the midwest, Microsoft’s biggest Azure datacenter is “US Central” located in Des Moines, as Iowa is currently a very business-friendly place to put a huge datacenter)

If you’re a registered 501c3 non-profit (or your local country’s equivalent if you’re outside the US), head on over to Tech Soup to take advantage of this fantastic deal.

As an added bonus, if you have Windows Server Datacenter licenses from TechSoup or that your organization purchased with Software Assurance, each 2-socket license can be run on up to two Azure compute instances each with up to 8 virtual cores, reducing the cost of your instances even further (as standard Windows instances include the cost of the Windows license at full nonprofit prices.). This also applies to SQL Server.

Here’s the process:

  1. Read the FAQ.
  2. Register your organization with TechSoup if you haven’t already done so.
  3. Head over to Microsoft’s Azure Product Donations page and hit “Get Started”
  4. At some point in the process you’ll also want to create an Azure account to associate the credits with. If you’re already using Office 365 for nonprofits, it’s best to tie an account to your O365 domain.

NACBA Admin Day

Here’s the list of resources from this morning’s presentation on Social Media 201 at the KC chapter of #NACBA Admin Day. I’ll add stuff periodically if I run across anything particularly interesting.

And, of course, it wouldn’t be complete without a plug – if your church has any IT needs that aren’t being met, head on over to my company at nerdherd.net

VMWare opens academic pricing to non-profits!

This just in from my Dell rep, and confirmed by several in the CITRT Twitterverse: VMWare has opened up their academic pricing to non-profits. Jason Powell has the pricing information at his blog. The relevant bits from VMWare:

Definition and Requirements of a Non-Profit Entity for Eligibility to Participate in the VMware Academic Buying Program:
The following U.S. Non-Profits under U.S. Tax Code 501(c) are eligible to participate in the VMware Academic Buying Program.

  • Non-Profits are defined under U.S.Tax Code 501(c)(3) as an organization which is organized and operated exclusively for one of the following purposes:
    • Religious
    • Charitable
    • Scientific
    • Literary
    • Educational
    • In the prevention of cruelty to children or animals
    • In the testing for public safety
    • Fostering national or international amateur sports competition
  • Non-Profits under U.S. Tax Code 501(d) Religious or Apostolic Organizations
  • Non-Profits under U.S. Tax Code 501(e) Cooperative Health Services provided to Hospitals
  • Non-Profits under U.S. Tax Code 501(f) Cooperative Service Organizations of Operating Educational Organizations providing cooperative investment services for Educational Organizations
  • Non-Profits under U.S. Tax Code 501(k) Child Care Organizations which supply child care to children with working parents
  • Non-Profits under U.S. Tax Code 501(n) Charitable Risk Pools which pools insurance risks of 501(c) (3) Organizations

Not all nonprofits qualify, of course:

U.S. Organizations not eligible to participate in the VMware Academic Buying Program:

  • U.S. Tax Code 501(c) 1 Non-Profits as defined as Corporate Organization under Acts of Congress, or as Instrumentalities of the United States.
  • U.S. Tax Code 501(c) 2 Non-Profits as defined as Title Holding Corporations for Exempt Organizations, or those who hold title to property owned by Exempt Organizations.
  • Organizations filed under 501(c) (4 through 27). This includes:
    • Teachers’ Retirement Fund Associations
    • Domestic Fraternal Societies and Associations
    • Fraternal Beneficiary Societies and Associations
    • Social and Recreation Clubs
    • Business Leagues, Chambers of Commerce, Real Estate Boards, etc.
    • Labor, Agricultural, and Horticultural Organizations
    • Civic Leagues, Social Welfare Organizations, and Local Associations of Employees
    • Political organizations
    • Labor or fraternal organizations
  • Other Organizations not eligible:
    • Organizations that are an integral part of local government or have governmental powers
    • Hospitals not wholly owned by a University
    • Health Management organizations (HM)
    • Preferred Provider organization (PPO)
    • Non-profits that are not charitable organizations or act as non-profit lobbying groups
    • Private Foundations
    • Academic facilities that qualify for Academic status.

If you’re not in the US, same sort of deal applies, if your organization is equivalently defined as non-profit under your local tax codes. Contact your VMWare reseller for details.